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ABSTRACT 
 
This chapter is inspired by a session the author gave at the 10th EMAC 
Conference (Engineering, Mathematics, and Applications) at the University of 
Technology,Sydney, in December 2011. The audience was university teachers, 
but the software, Autograph, was designed for use in High Schools. The author 
was able to show how a simple, pedagogically focused interface could be used to 
create a highly visual approach to the teaching of two favourite topics: Vectors 
(in 2D and 3D) and Differential Equations (1st and 2nd Order). 
 
 
 
INTRODUCTION 
 
Teachers of University mathematics are generally used to using one of the soft-
ware giants, such as Maple, Mathcad, or Mathematica. These tools can be tamed  
to perform almost any mathematical task, but each requires a detailed knowledge  
of syntax; furthermore, the presentation is generally in "notebook" style, which is  
perfect for research use, but can appear confusing when used as visualizer in the  
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Figure 1 Autograph has a cleanly designed menu/icon system for its statistics, 
2D and 3D pages 
 

 
 
classroom.  Autograph on the other hand is designed with teaching in mind: the 
screen is uncluttered, and all operations are easily found by the judicious use of 
‘select’ and ‘right-click’. 
 
The University teachers in Sydney were somewhat surprised that software 
created for high school use could bring so many new insights into the teaching of 
vectors and differential equations. 
 
BACKGROUND  
 
Autograph was conceived in the secondary classroom, covering topics right up  
to University entrance in the UK. This included many topics that have long since  
risen above school curriculums in the general rush to consolidate, together with 
the laudable aim of trying to encourage more students to study mathematics. The 
two topics of this chapter, vectors and differential equations, used to be well 
inside the  school envelope, but they now occupy the overlapping space between 
the top end  of high school and the first year of university mathematics. 
  In the design of Autograph, there was an overriding determination to make the  
creation of dynamic objects as straightforward as possible. This has led to an 
environment where it is possible to study concepts from the “bottom up”. The 
logical addition of dependent objects and variable parameters can help students 
to build firm foundations based on a creative mix of dynamic visualisations and 
solid bookwork. 
  To get the most out of this article, you are invited to download and install 
Autograph (PC or Mac) from  
  www.autograph-maths.com/download 
and to email the author for a serial number (otherwise your installation will run 
out after 30 days). 
  Please also refer to the online dynamic full colour version of this chapter on 
the Web:  
   www.tsm-resources.com/dynamic  

http://www.autograph-maths.com/download
http://www.tsm-resources.com/dynamic
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Figure 2. A clear understanding of elementary operations can be gained if the 
vectors move 
 

 
 
 
Representing vectors in 2D 
 
I am a firm believer in teaching vectors in 2D the way they are handled in 3D. 
This way the transition from 2 to 3 dimensions can be painless. 
  Figure 2 illustrates a strategy for understanding the principles of vectors from  
a standing start. In Autograph you can define a vector on a given point by enter- 
ing its two components, e.g. define AB = [3,1], and the point "A" is moveable, or  
define the vector between two points, e.g. A (3,0) and B (4,2), in which case both  
A or B are moveable. 
  Moving the point A shows that the vector [3, 1] can in fact be anywhere, 
including copied onto C (to form CD). Likewise, AC can be copied to BD. 
Hence, the parallelogram law can be studied, but only once we have established 
addition. The addition of two vectors is defined as a vector with the sum of the x 
and the sum of  the y components, and hence can be represented by the leading 
diagonal of the parallelogram. 
  To move on to subtraction, we recall that in simple addition of numbers,  
3 + (–3) = 0: so the process of subtraction requires the concepts of a negative 
number and of zero to be in place. So it is with vectors: to establish subtraction, 
we need a "negative" vector and "zero" vector to be defined. Students can be 
asked to move  C until the sum is zero. This leads to the definition of a negative 
vector and a zero vector, and ultimately to the realization that subtraction can be 
represented by the other diagonal of the parallelogram. 
  The concept of a unit vector can also be explored: draw a unit circle on a point  
somewhere, and create a unit vector on that point from the vector AB (or CD). 
Note that it is in the same direction, but of unit length. 
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Figure 3. A dynamic representation of the vector equation of a straight line 
 

 
 
  There are many forms for the straight line: explicit (e.g. y = 3x – 1) and 
implicit (e.g. x – 2y = 6), and based on the vector form: [x, y] = [a, b] + k[l, m], 
which is a line through (a, b) parallel to the vector [l, m]. 
  It is useful to use the implicit form to prepare students for the equation of a 
plane, and to establish that the vector [a, b] is perpendicular to the line ax + by = 
c (as illustrated in Figure 3 on the left). With this straight line, the parallel vector 
is [2, 1], and so the perpendicular vector is [1, –2]. Is it a coincidence that "1" 
and "–2" are the coefficients of "x" and "y" in the straight line equation? 
  To confirm this, place a point " X" on the line. The vector from the origin to X  
is the vector [x, y]. It is useful to be able to confirm that the scalar product of  
[1, –2] and [x, y] is 6. More generally, for the line ax + by = c, the value of  
[a, b].[x. y] is c and [a, b] is perpendicular to the line (as illustrated in Figure 3 
on the right) 
 
The Transition to 3D 
 
The transition to 3D should now be a simple matter of adding another dimension. 
A line becomes a plane and the perpendicular vector now takes its components 
from the three coefficients of "x", "y" and "z" (Figure 4, left). 
  Figure 4, right, shows how three points in a plane can create two vectors 
whose  sum also lies in the plane. Furthermore, moving the original vectors 
around the plane can demonstrate how any point in the plane can be found as a 
linear combination of the original two vectors. Hence, a plane can be defined 
from a point and two vectors, for example the upper plane in the diagram. 
 
The Shortest Distance between Two Skew Lines 
 
This is a tricky topic to teach, but one that responds beautifully to a dynamic 
visual approach. In Figure 5, left, a straight line has been formed from two  
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Figure 4. The extension from 2D to 3D is a natural step with dynamic figures 
 

 
 
points, and a second line entered in vector form, through (1, 2, 0) and parallel to 
the vector [−1, 1, 1]. The shortest distance is part of a line that is in a direction 
that is mutually perpendicular to the two lines. To illustrate this, create two 
vectors, one on each line. Place a point somewhere on one of the lines, and create 
on this point the cross product of the two vectors. 
  Now construct a straight line through the end points of this vector. In Figure 5,  
right, this point has been moved along the line on which it is based until the per- 
pendicular line cuts the second of the two original lines. This new point defines 
the shortest distance! You can confirm this by getting Autograph to do the 
calculation: select the two original lines and ask for "shortest distance". 
 
The Line of Intersection of Two Planes 
 
In Figure 6, left, one plane is 2x – 3y = 6, and the second is defined by a point  
(1, 1, –1) and the two vectors [1, –1, 1] and [2, 1, 1]. Autograph has been asked 
to construct the line of intersection, and in doing so states its vector equation as 
 
Figure 5    
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Figure 6 
 

 
 
 
[x, y, z] = [0, −2, −0.6667] + λ[0.7804, 0.5203, 0.3468] 
and the angle between the two planes is 58.74°, or 1.025 radians. 
  This version of the vector equation is of course only one of an infinite number  
of possibilities, based on any point on the line, and any vector that is parallel to  
[0.7804, 0.5203, 0.3468], so this is unfortunately not a good vehicle for checking  
student answers! 
  So far so good, but where is the understanding? 
  If you place a point someone along the line, and then for each plane construct  
the normal unit vector, you have the opportunity to draw the cross product of 
these  
two unit vectors. Autograph gives the answer for this cross product as  
[−0.6671, −0.4447, −0.2965]. Is this vector parallel to the vector given as part of 
the intersection line equation: [0.7804, 0.5203, 0.3468]? 
  This will demonstrate convincingly that the line of intersection is in a direction  
that is mutually perpendicular to the two planes, as shown in Figure 6, right. 
 
While We Are in 3D ... 
 
Other topics to benefit from 3D graphing include sections of a cone, and various  
possibilities in the construction of volumes of revolution of an area about an axis. 
  The teaching of all these topics has been immeasurably improved by software  
that can treat them in 2D and 3D using dynamic objects. 
 
Visualising Conic Sections 
 
In Figure 7, left, a family of conics has been drawn from the polar equation 
1/r = 1 + k cosθ 
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Figure 7 
 

 
 
with values of "k" set as follows: k = 0 (circle), k = 0.5 (ellipse), k = 1 
(parabola),  k = √2 (rectangular hyperbola) and k = 2 (hyperbola). 
  A good knowledge of these important curves in 2D can be achieved through 
the polar form, though a firm understanding of all the Cartesian forms and their 
various coordinate geometry properties is also important. 
  With this grounding in 2D, the 3D scene is a perfect follow-on. Figure 7, right,  
shows the polar form of a cone, r = z (though the Cartesian form x²+ y²   = z² is  
another way of plotting the same thing). So how to draw the intersecting plane?   
In 2D, y = mx + c is a straight line. In 3D the same equation is a plane as it plots  
y = – mx + c "for all z". The plane that we want is z = ax + b (plotted "for all y"), 
and varying "a" is just the same as varying "m" as the slope of the line in 2D. 
Autograph’s constant controller can vary "m" to find all the categories of conic 
section, including of course the double-branched hyperbola. 
 
A New Look at Volumes of Revolution 
 
In Figure 8, a parabola has been drawn (plotted as 2D in 3D), and an element of  
area created between two points on the curve that are close to each other, which 
is just a single rectangle. In Figure 8, left, an axis of rotation has been drawn 
from y = –1 (treated as a 2D object in 3D), and in Figure 8, right, the axis is  
x = –1. 
  In each case an element of volume is shown, but how important it is to train  
students to predict these shapes before they are drawn. 
  Some wonderfully interesting 3D volumes can be created using areas, 
appropriate axes of revolution, and different "rules" for calculating the area. How 
important a good grounding in 2D is before tacking the 3D situation. In Figure 9, 
left, the pro-cess of finding the area between two curves is being explored in 2D, 
and in Figure 9, right, the effect of rotating such an area to form a solid in 3D. 
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Figure 8 
 

 
 
Figure 9 Similarly, the extension of 2D to 2D in calculus is a natural step 
 

 
 
 
 
 
Teaching 1st Order Differential Equations from the bottom up! 
 
This has to be a topic that can really benefit from the use of dynamic images.  
Additionally, there are big advantages for teachers and learners of differential 
equations to having software available that will instantly plot slope fields from 
equations that are entered either explicitly or implicitly. 
  With Autograph, it was decided to make use of the keyboard characters ‘ and "  
to create y' = dy/dx and y" = d²y/dx²  entries. In the case of "t" being the 
independent variable and "x" the dependent variable, characters x-dot and x-
double-dot [ẋ and ẍ] have been used. 
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The other interface issue to settle is how to enter the starting conditions. This  
requires one or more points to act as the starting point for the solution. With 
Autograph there are three options: 
  • Start each solution off by a mouse click. 
  • Use a selected point as the start point, which can then be dragged around. 
  • Establish and use a set of points on a line which will create a neat family of  
solutions. 
 
  With a tool such as Autograph it is possible to establish a really firm 
understanding of the basic principles by tackling the subject from the "bottom 
up". A typical sequence to explore the basic linear first order differential 
equation is: 
 
1.  y' = 0 
  The solution set is many horizontal straight lines. 
2.  y' = 1 
  The solution set is many lines straight lines with gradient = 1. 
3. y' = x 
 This yields is a family of parabolas. You can then compare the slope field with  
 a family of parabolas from y = ½x2+ c, as in Figure 10, left. In this diagram,  
 a moveable vector [0, 2] has been placed at a point on one of the curves, to  
 show that it is a vertical displacement that defines the family of parabolas. 
4. y' = y 
 Ask what the solution is, and hold your breath as answers such as “parabolas  
 the other way” come in - it may have been only last week you were teaching  
 the exponential function! See Figure 10, right. 
 This is of course a nice reminder that y = ex  is a function that is equal to its  
 own derivative, but what are all the other solutions indicated by the slope  
 field? Again, wait for “ex + c” ... ! The visual approach confirms that the  
 answer cannot be y = ex + c. So where does the constant of integration go? 
5.  y' = –y 
 This is the first time an exponential decay appears. So now we can usefully  
 rearrange implicitly: 
6. y' + y = 0 
 This is also the exponential decay of course, and the basic building block of  
 the whole topic of linear 1st and 2nd order differential equations. 
7. y' + y = x 
 The left side of this equation is referred to as the “complimentary function”;  
 the right side is the “particular integral”. This visual approach confirms that  
  this complimentary function always implies an exponential decay down to the  
 steady state, in this case y = x – 1. See Figure 11, left. 
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Figure 10. Introducing 1st order differential equations “from the bottom up” 
 

 
 
 
8. y' + y = sinx 
 This is another good example of exponential decay, this time decaying to  
 a periodic function, see Figure 11, right, which also shows the relationship  
 between the steady state and the particular integral. 
 
 Helping students to predict slope fields is as important as it is to ensure that  
they predict regular graphs before they are computer-drawn. Figure 12 gives two 
good  examples of predictable outcomes. 
 
 
 
Other Applications of 1st Order Differential Equations 
 
There are many other applications of 1st order differential equations that can be  
visualized well; here are two more. First, the plotting of isoclines (points of equal  
slope), in this case, in Figure 13, left, the family of circles that are related to the  
differential equation y’ = x² + y². 
 The second example, in Figure 13, right, is the modeling of a falling object 
that is approaching its terminal velocity. In this case the independent variable is 
time (t) and the dependent variable is velocity (v). The equation is derived from 
applying Newton’s 2nd Law to the falling mass: 
  mg – kv² = m dv/dt 
and the appropriate constant values entered (m = 80kg, g = 9.81 m/s², k = 2 and  
n = 2). Again, the ability to enter a differential equation implicitly is a real 
benefit. 
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Figure 11. How to visualise the complimentary function and particular integral 
 

 
 
Figure 12. How to predict special instances of elementary 1st order D.E.s 
 

 
 
 
 
Teaching 2nd Order Differential Equations from the Bottom Up! 
 
If you can establish a firm understanding of graphing and vectors in 2D then the 
3rd dimension will follow naturally. Similarly, if you work through 1st order 
D.E.s systematically, and using the implicit form, then the move to second order 
equations can be painless. Once again, the ability to enter differential equations 
implicitly is of paramount importance to a firm understanding of their form. 
 Second Order equations require two starting conditions. Autograph offers the  
chance to define the first as one or more points at the start, with the same options  
as the 1st orders (click, selected point or a line of points). The second condition is  
determined by the initial slope. 
 
 This is a typical sequence for “bottom” up learning of the 2nd order equation: 



 Vectors and Differential Equations  

123 
 

Figure 13 
 

 
 

 
1. Reset the axes to the “x” on the vertical axis and “t” on the horizontal axis,  
 taking account of the fact that the solutions of 2nd orders are usually concerned  
 with displacement and time 
2. ẍ = 0 
 On the first integration, we get ẋ = a, and on the second integration we get  
 x = at + b. ie The solutions take the form of any straight line through the start  
 point with any initial gradient. 
3. ẍ = 1 
 On the first integration, we get ẋ = t + c, and on the second we get  
 x = ½t2+ cx + d. 
 ie Any parabola through the start point with any initial gradient. 
4. ẍ = x [see Figure 14, left] 
 The interpretation here is that the acceleration is away from the t-axes whether  
 “x” is positive or negative. The solution takes the form x = aexp(t) + bexp(–t). 
5. ẍ = –x 
 Here the acceleration is always towards the t-axis, and switches as a solution  
 crosses the t-axis, hence there are oscillations which turn out to be sinusoidal.  
 Figure 14, right shows many of these DE forms, all on the same pages, all 
 starting at (0,1) with zero initial gradient. 
6. ẍ + x = 0 
  This is a literal rearrangement of  ẋ = –x, so a sinusoidal solution is expected.  
 In Figure 15, left, the plot of  ẋ has also been included (as a dotted line). 
7. ẍ + x = f(t) 
 This gives the opportunity to explore many different particular integrals 
8.  ẍ + 2λ ẋ + n2x = 0 
 This introduces “damping”, and the constant controlled is a good way to vary  
 “λ” and hence vary the damping (Figure 15, right). 
9. ẍ + 2λẋ + n2x = f(t) 
 This gives the opportunity to explore many different particular integrals. 
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Figure 14  Elementary forms of 2nd order differential equations 

 
 
Figure 15. Introducing 2nd order linear D.E.s “from the bottom up” 

 
 
 
 
Entering Mathematical Notation, when One-Line Mathematics is Sufficient 
 
There are many occasions when mathematical expressions can be perfectly 
adequately entered into “Word” as a single line using the standard “Unicode” 
symbol. The equations for this article were all entered using the Autograph 
onscreen keyboard:   
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CONCLUSION 
 
There are many software systems available to take these and many other topics 
on to a high level, but the approach taken by Autograph is ideally suited to 
establishing good understanding from the bottom up. Mathematics is, above all, a 
subject that requires a firm understanding of basic principles. All teachers and 
students should be wary of any attempt to suggest that modern software and 
Internet resources can in any way short circuit the learning process. 
 
Autograph was designed for the visualisation of school-level and first year uni- 
versity level topics. The two topics in this chapter, vectors and differential 
equations, and perfect examples of how successful a visual approach can be. 
 However, a printed chapter is not the ideal environment in which to discuss 
the impact of dynamic software – its power emanates almost entirely from the 
fact that things move! There is a dynamic Web page dedicated to illustrating all 
the examples in the chapter on  www.tsm-resources.com/pubs/dynamic-ch6  
 
     Douglas Butler   
   debutler (at) argonet.co.uk  
   Oundle, March 2012 
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